
Finding Counterexamples from Parsing Conflicts

Chinawat Isradisaikul Andrew C. Myers
Department of Computer Science

Cornell University
Ithaca, New York, United States

chinawat@cs.cornell.edu andru@cs.cornell.edu

Abstract
Writing a parser remains remarkably painful. Automatic parser gen-
erators offer a powerful and systematic way to parse complex gram-
mars, but debugging conflicts in grammars can be time-consuming
even for experienced language designers. Better tools for diagnosing
parsing conflicts will alleviate this difficulty. This paper proposes a
practical algorithm that generates compact, helpful counterexamples
for LALR grammars. For each parsing conflict in a grammar, a
counterexample demonstrating the conflict is constructed. When the
grammar in question is ambiguous, the algorithm usually generates
a compact counterexample illustrating the ambiguity. This algorithm
has been implemented as an extension to the CUP parser generator.
The results from applying this implementation to a diverse collection
of faulty grammars show that the algorithm is practical, effective,
and suitable for inclusion in other LALR parser generators.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—Debugging aids, Diagnostics; D.3.4
[Programming Languages]: Processors—Parsing

General Terms Languages

Keywords Context-free grammar; shift-reduce parser; ambiguous
grammar; error diagnosis; lookahead-sensitive path; product parser

1. Introduction
An early triumph of programming language research was the
development of parser generators, tools that in principle provide a
concise, declarative way to solve the ubiquitous problem of parsing.
Although LALR parser generators are powerful and have been
available since the 1970s [15], they remain difficult to use, largely
because of the challenges that arise when debugging grammars to
eliminate shift/reduce and reduce/reduce conflicts.

Currently, debugging LALR grammars requires a solid under-
standing of the internal mechanism of LR parsers, a topic that is
often but not always taught in undergraduate-level compiler courses.
Even with this understanding, language designers can spend hours

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PLDI’15, June 13–17, 2015, Portland, OR, USA.
Copyright © 2015 ACM 978-1-4503-3468-6/15/06. . . $15.00.
http://dx.doi.org/10.1145/2737924.2737961

trying to understand how a grammar specification leads to the ob-
served conflicts. The predictable result is that software developers
tend to hand-code parsers even for tasks to which parser generators
are ideally suited. Hand-coded parsers lead to code that is more
verbose, less maintainable, and more likely to create security vul-
nerabilities when applied to untrusted input [9, 10]. Developers may
also compromise the language syntax in order to simplify parsing,
or avoid domain-specific languages and data formats altogether.

Despite the intrinsic limitations of LL grammars, top-down
parser generators such as ANTLR [20, 21] are popular perhaps
because their error messages are less inscrutable. It is surprising that
there does not seem to have been much effort to improve debugging
of conflicts in the more powerful LR grammars. Generalized LR
parsers [28] enable programmers to resolve ambiguities program-
matically, but even with GLR parsers, ambiguities could be better
understood and avoided. Moving towards this goal, Elkhound [17]
reports parse trees but only when the user provides a counterexample
illustrating the ambiguity. Some LALR parser generators attempt to
report counterexamples [18, 30] but can produce misleading coun-
terexamples because their algorithms fail to take lookahead symbols
into account. Existing tools that do construct correct counterex-
amples [8, 27] use a brute-force search over all possible grammar
derivations. This approach is impractically slow and does not help
diagnose unambiguous grammars that are not LALR.

We improve the standard error messages produced by LR parser
generators by giving short, illustrative counterexamples that identify
ambiguities in a grammar and show how conflicts arise. For am-
biguous grammars, we seek a unifying counterexample, a string of
symbols having two distinct parses. Determining whether a context-
free grammar is ambiguous is undecidable, however [13], so the
search for a unifying counterexample cannot be guaranteed to ter-
minate. When a unifying counterexample cannot be found in a
reasonable time, we seek a nonunifying counterexample, a pair of
derivable strings of symbols sharing a common prefix up to the point
of conflict. Nonunifying counterexamples are also reported when
the grammar is determined to be unambiguous but not LALR.

Our main contribution is a search algorithm that exploits the
LR state machine to construct both kinds of counterexamples. Our
evaluation shows that the algorithm is efficient in practice. A key
insight behind this efficiency is to expand the search frontier from
the conflict state instead of the start state.

The remainder of the paper is organized as follows. Section 2
reviews how LR parser generators work and how parsing conflicts
arise. Section 3 outlines properties of good counterexamples. Sec-
tions 4 and 5 explore algorithms for finding nonunifying and uni-
fying counterexamples. An implementation of the algorithm that
works well in practice is discussed in Section 6. Using various gram-
mars, we evaluate the effectiveness, efficiency, and scalability of
the algorithm in Section 7. Section 8 discusses related work, and
Section 9 concludes.

2. Background
We assume the reader has some familiarity with LR grammars and
parser generators. This section briefly reviews the construction of
an LR parser and shows how LR parsing conflicts arise.

2.1 Parser State Machine
Starting from a context-free grammar like the one in Figure 1, the
first step in generating an LR(1) parser is the construction of a parser
state machine for the grammar. Each state contains a collection of
transitions on symbols and a collection of production items. Each
transition is either a shift action on a terminal symbol or a goto on a
nonterminal symbol. A production item (abbreviated item) tracks
the progress on completing the right-hand side of a production. Each
item contains a dot (�) indicating transitions that have already been
made on symbols within the production, and a lookahead set of
possible terminals that can follow the production.

The items within a state include those that result from taking
transitions from a predecessor state, and also those generated by
the closure of all the productions of any nonterminal that follows a
dot. For the start state, the items include those of productions of the
start symbol and their closure1. Figure 2 shows a partial parser state
diagram for the example grammar.

A parser maintains a stack of symbols during parsing. A shift
action on the next input symbol t is performed when a transition
on t is available in the current state; t is pushed onto the stack. A
reduction is performed when the current state contains an item of
the form A! X1 X2 � � � Xm �, whose lookahead set contains the
next input symbol; m symbols are popped from the stack, and the
nonterminal A is then pushed onto the stack. If neither a shift action
nor a reduction is possible, a syntax error occurs.

2.2 Shift/Reduce Conflicts
For LR(1) grammars, actions on parser state machines are determin-
istic: given a state and the next input symbol, either a shift action
or a reduction is executed. Otherwise, a state may contain a pair of
items that create a shift/reduce conflict on a terminal symbol t :

u a shift item of the form A ! X1 X2 � � � Xk � XkC1 � � � Xm,
where XkC1 D t for some k � 0 and m � 1, and

u a reduce item of the form B ! Y1 Y2 � � � Yn �, whose lookahead
set contains t .

The example grammar has a shift/reduce conflict, because the
two items in State 10 match the criteria above on lookahead else.
This is the classic dangling else problem. The grammar is ambiguous
because there are two ways to parse this statement:

if expr then if expr then stmt � else stmt

Even though the grammar is ambiguous, not every conflict must
contribute to the ambiguity. Conflicts may also occur even if the
grammar is not ambiguous. For instance, the grammar in Figure 3
has a shift/reduce conflict between shift action Y ! a � a b and
reduction X ! a � under symbol a. Nevertheless, this grammar is
LR(2) and hence unambiguous.

2.3 Reduce/Reduce Conflicts
A state may also contain a pair of distinct reduce items that create a
reduce/reduce conflict because their lookahead sets intersect:

u A! X1 X2 � � � Xm �, with lookahead set LA, and
u B ! Y1 Y2 � � � Yn �, with lookahead set LB such that LA \

LB ¤ ;.

1 The actual parser construction adds a special start symbol and production,
which are omitted in this section.

stmt ! if expr then stmt else stmt

j if expr then stmt

j expr ? stmt stmt

j arr [expr] := expr

expr ! num j expr + expr

num ! hdigiti j num hdigiti

Figure 1. An ambiguous CFG

stmt ! � if expr then stmt else stmt f$ g

stmt ! � if expr then stmt f$ g

stmt ! � expr ? stmt stmt f$ g

stmt ! � arr [expr] := expr f$ g

expr ! � num f?; + g

expr ! � expr + expr f?; + g

num ! � hdigiti f?; +; hdigitig
num ! � num hdigiti f?; +; hdigitig

State 0

stmt ! if � expr then stmt else stmt f$; else; : : : g

stmt ! if � expr then stmt f$; else; : : : g

expr ! � num fthen; + g

expr ! � expr + expr fthen; + g

num ! � hdigiti fthen; +; hdigitig
num ! � num hdigiti fthen; +; hdigitig

State 6

stmt ! if expr � then stmt else stmt f$; else; : : :g
stmt ! if expr � then stmt f$; else; : : :g
expr ! expr � + expr fthen; + g

State 7

stmt ! if expr then � stmt else stmt f$; else; : : :g
stmt ! if expr then � stmt f$; else; : : :g
stmt ! � if expr then stmt else stmt f$; else; : : :g
stmt ! � if expr then stmt f$; else; : : :g

: : :

State 9

stmt ! if expr then stmt � else stmt f$; else; : : :g
stmt ! if expr then stmt � f$; else; : : :g

State 10

stmt ! if expr then stmt else � stmt f$; else; : : :g
stmt ! � if expr then stmt else stmt f$; else; : : :g
stmt ! � if expr then stmt f$; else; : : :g

: : :

State 11

stmt ! if expr then stmt else stmt � f$; else; : : :g

State 12

if

expr

then

stmt

else

stmt

if

if

Figure 2. Selected parser states for the ambiguous CFG. Symbol $
indicates the end of input.

S ! T j S T

T ! X j Y

X ! a

Y ! a a b

Figure 3. An unambiguous CFG with a shift/reduce conflict

2.4 Precedence
To simplify grammar writing, precedence and associativity declara-
tions can be used to resolve shift/reduce conflicts. For example, the
grammar in Figure 1 has a shift/reduce conflict between shift item
expr! expr � + expr and reduce item expr! expr + expr � under
symbol +, exhibited by the counterexample expr + expr � + expr:
Declaring operator + left-associative causes the reduction to win.

3. Counterexamples
The familiar shift/reduce conflicts in the previous section are easily
diagnosed by experienced programming language designers. In
general, the source of conflicts can be more difficult to find.

3.1 A Challenging Conflict
The example grammar in Figure 1 has another shift/reduce conflict
in State 1 (not shown in Figure 2) between

u shift item num! num � hdigiti, and
u reduce item expr! num �

under terminal symbol hdigiti. It is probably not immediately clear
why this conflict is possible, let alone what counterexample explains
the conflict. In fact, an experienced language designer in our research
group spent some time to discover this counterexample by hand2:

expr ? arr [expr] := num � hdigiti hdigiti ? stmt stmt:

This statement can be derived in two ways from the production
stmt! expr ? stmt1 stmt2. First, we can use the reduce item:

u stmt1 !� arr [expr] := num
u stmt2 !� hdigiti hdigiti ? stmt stmt

Second, we use the shift item:

u stmt1 !� arr [expr] := num hdigiti
u stmt2 !� hdigiti ? stmt stmt

This counterexample, along with its two possible derivations,
immediately clarifies why there is an ambiguity and helps guide the
designer towards a better syntax, e.g., demarcating stmt1 and stmt2.
Our goal is to generate such useful counterexamples automatically.

3.2 Properties of Good Counterexamples
Useful counterexamples should be concise and simple enough to
help the user understand parsing conflicts effortlessly. This principle
leads us to prefer counterexamples that are no more concrete than
necessary. Although a sequence of terminal symbols that takes the
parser from the start state to the conflict state through a series of shift
actions and reductions might be considered a good counterexample,
some of these terminals may distract the user from diagnosing the
real conflict. For example, the following input takes the parser from
State 0 to State 10 in Figure 2:

if 2 + 5 then arr[4] := 7

But the expression 2 + 5 could be replaced with any other expres-
sion, and the statement arr[4] := 7 with any other statement.
Good counterexamples should use nonterminal symbols whenever
the corresponding terminals are not germane to the conflict.

As discussed earlier, LALR parsing conflicts may or may not
be associated with an ambiguity in a grammar. Counterexamples
should be tailored to each kind of conflict.

2 This conflict was originally part of a larger grammar.

Unifying counterexamples When possible, we prefer a unifying
counterexample: a string of symbols (terminals or nonterminals)
having two distinct parses. A unifying counterexample is a clear
demonstration that a grammar is ambiguous. The counterexample
given for the challenging conflict above is unifying, for example.

Good unifying counterexamples should be derivations of the
innermost nonterminal that causes the ambiguity, rather than full
sentential forms, to avoid distracting the user with extraneous
symbols. For instance, a good unifying counterexample for the
conflict in Section 2.4 is expr + expr � + expr, a derivation of the
nonterminal expr, rather than expr + expr � + expr ? stmt stmt, a
derivation of the start symbol.

Nonunifying counterexamples When a unifying counterexample
cannot be found, there is still value in a nonunifying counterexample:
a pair of derivable strings of symbols sharing a common prefix
up to the point of conflict but diverging thereafter. The common
prefix shows that the conflict state is reachable by deriving some
nonterminal in the grammar. For example, the following is a possible
nonunifying counterexample for the challenging conflict, where each
bracket groups symbols derived from the nonterminal stmt:

expr ? arr [expr] := num � hdigiti ? stmt stmt
expr ? arr [expr] := num � hdigiti stmt

stmt stmt

stmt

Like unifying counterexamples, good nonunifying counterexam-
ples should be derivations of the innermost nonterminal that can
reach the conflict state.

Nonunifying counterexamples are produced for unambiguous
grammars that are not LALR. Additionally, since ambiguity detec-
tion is undecidable, no algorithm can always provide a unifying
counterexample for every ambiguous grammar. In this case, provid-
ing a nonunifying counterexample is a suitable fallback strategy.

4. Constructing Nonunifying Counterexamples
We first describe an algorithm for constructing nonunifying coun-
terexamples that are derivations of the start symbol. The algorithm
for constructing unifying counterexamples, described in Section 5,
identifies the innermost nonterminal that can reach the conflict state.

Recall that certain terminals in a counterexample can be replaced
with a nonterminal without invalidating the counterexample. Such
terminals must have been part of a reduction. Therefore, a coun-
terexample can be constructed from a walk along transition edges
in the parser state diagram from the start state to the conflict state.
Not all such walks constitute valid counterexamples, however. In
particular, the shortest path is often invalid. For example, the input
if expr then stmt forms the shortest path to State 10 in Figure 2,
but a conflict does not arise at this point. If the next input symbol is
else, the shift action is performed; if the end of input is reached, the
reduction occurs. For a counterexample to be valid, the lookahead
sets of parser items must be considered as well.

Instead of finding the shortest path in the state diagram, our algo-
rithm finds the shortest lookahead-sensitive path to the conflict state.
Intuitively, a lookahead-sensitive path is a sequence of transitions
and production steps3 between parser states that also keeps track of
terminals that actually can follow the current production.

To define lookahead-sensitive paths formally, we first define a
lookahead-sensitive graph, an extension of an LR(1) parser state
diagram in which production steps are represented explicitly. Each
vertex is a triple .s; itm; L/, where s is a state number, itm is an item
within s, and L is a precise lookahead set. The edges in this graph
are defined as follows:

3 A production step picks a specific production of a nonterminal to work on.
These steps are implicit in an LR closure.

u transition (Figure 4(a)): For every transition in the parser, there is
an edge between appropriate parser states and items, preserving
the precise lookahead set between the vertices.

u production step (Figure 4(b)): For every item whose symbol after
� is a nonterminal, there is an edge from this item to each item
associated with a production of the nonterminal within the same
state. The precise lookahead set changes to the set of terminals
that actually can follow the production. Denoted followL.itm/,
the precise follow set for itm in L’s context is defined as follows:

followL.A! X1 � � � Xn�1 � Xn/ , L.

followL.A! X1 � � � Xk � XkC1 XkC2 � � � Xn/ , fXkC2g

if XkC2 is a terminal.

followL.A ! X1 � � � Xk � XkC1 XkC2 � � � Xn/ ,
FIRST.XkC2/ if XkC2 is a nonnullable nonterminal, i.e.,
a nonterminal that cannot derive ". FIRST.N / is the set of
terminals that can begin a derivation of N .

followL.A ! X1 � � � Xk � XkC1 XkC2 � � � Xn/ ,
FIRST.XkC2/[followL.A! X1 � � � XkC1 �XkC2 � � � Xn/
if XkC2 is a nullable nonterminal.

A shortest lookahead-sensitive path is a shortest path in the
lookahead-sensitive graph. To construct a counterexample, the
algorithm starts by finding a shortest lookahead-sensitive path from
.s0; itm0; f$g/ to .s0; itm0; L0/, where s0 is the start state, itm0 is the
start item, s0 is the conflict state, itm0 is the conflict reduce item4,
and L0 contains the conflict symbol. The symbols associated with
the transition edges form the first part of a counterexample. For
instance, Figure 5(a) shows the shortest lookahead-sensitive path to
the conflict reduce item in State 10 of Figure 2. This path gives the
prefix of the expected counterexample:

if expr then if expr then stmt �

To avoid excessive memory consumption, our algorithm does
not construct the lookahead-sensitive graph in its entirety. Rather,
vertices and edges are created as they are discovered.

The partial counterexample constructed so far takes the parser
to the conflict state. Counterexamples can be constructed in full
by completing all the productions made on the shortest lookahead-
sensitive path. Since the conflict terminal is a vital part of counterex-
amples, this terminal must immediately follow �. In the example
above, a production step was made in State 9 (step 5 in Figure 5(a)),
where the next symbol to be parsed is the conflict terminal else. In
this case, the production can be completed immediately, yielding
the counterexample

if expr then if expr then stmt � else stmt

On the other hand, if the symbol immediately after � is a nonterminal,
a derivation of that nonterminal beginning with the conflict symbol
is required. Consider once again the conflict between expr! num �
and num ! num � hdigiti under lookahead hdigiti. The shortest
lookahead-sensitive path to the reduce item gives the prefix

expr ? arr [expr] := num �

but the next symbol to be parsed is stmt. In this case, we must find a
statement that starts with a digit, e.g., hdigiti ? stmt stmt, yielding
the counterexample

expr ? arr [expr] := num � hdigiti ? stmt stmt

The shortest lookahead-sensitive path only reveals a counterex-
ample that uses the conflict reduce item. A counterexample that uses
the conflict shift item can be discovered by exploring the states on

4 The conflict shift item cannot be used because we have no information
about the lookahead symbol after the completion of the shift item.

.s; itm D A ! X1 � � � Xk � XkC1 XkC2 � � � Xm; L/

.s0; itm0 D A ! X1 � � � Xk XkC1 � XkC2 � � � Xm; L/

XkC1

(a) Transition

.s; itm D A ! X1 � � � Xk � XkC1 � � � Xm; L/

.s; itm0 D XkC1 ! � Z1 � � � Zm0 ; followL.itm//

[prod] where XkC1
is a nonterminal

(b) Production step

Figure 4. Edges of a lookahead-sensitive graph

.0; START ! � stmt $; f$g/

.0; stmt! � if expr then stmt else stmt; f$g/

.6; stmt! if � expr then stmt else stmt; f$g/

.7; stmt! if expr � then stmt else stmt; f$g/

.9; stmt! if expr then � stmt else stmt; f$g/

.9; stmt! � if expr then stmt; felseg/

.6; stmt! if � expr then stmt; felseg/

.7; stmt! if expr � then stmt; felseg/

.9; stmt! if expr then � stmt; felseg/

.10; stmt! if expr then stmt �; felseg/

1[prod]

2if

3expr

4then

5[prod]

6if

7expr

8then

9stmt

(a) The shortest lookahead-sensitive path to the conflict reduce item

.10; stmt! if expr then stmt � else stmt/

.9; stmt! if expr then � stmt else stmt/

.7; stmt! if expr � then stmt else stmt/

.6; stmt! if � expr then stmt else stmt/

.9; stmt! � if expr then stmt else stmt/

.9; stmt! if expr then � stmt/

.7; stmt! if expr � then stmt/

.6; stmt! if � expr then stmt/

.0; stmt! � if expr then stmt/

.0; START ! � stmt $/
[prod]

if

expr

then

[prod]

if

expr

then

stmt

(b) The path to the conflict shift item obtained from the shortest lookahead-
sensitive path

Figure 5. Paths to the dangling-else shift/reduce conflict

the shortest lookahead-sensitive path as follows. Since transitions on
input symbols must be between the same states for both counterex-
amples, the only difference is that the derivation using the shift item
must take different production steps within such states. To deter-
mine these production steps, our algorithm starts at the conflict shift
item and explores backward all the productions that may be used in
the states along the shortest lookahead-sentitive path, until an item
used in the derivation using the reduce item is found. For example,
Figure 5(b) shows the reverse sequence leading to the shift item
of the dangling-else conflict. Observe that this sequence follows
the same states as in the shortest lookahead-sensitive path when
making transitions, namely, Œ0; 6; 7; 9; 6; 7; 9; 10�. Even though this
sequence yields the same counterexample as above, the derivation
is different.

5. Constructing Unifying Counterexamples
The algorithm for constructing nonunifying counterexamples does
not guarantee that the resulting counterexamples will be ambiguous
if the grammar is. To aid the diagnosis of an ambiguity, the symbols
beyond the conflict terminal must agree so that the entire string can
be parsed in two different ways using the two conflict items. Since
these conflict items force parser actions to diverge after the conflict
state, the algorithm must keep track of both parses simultaneously.

5.1 Product Parser
The idea of keeping track of two parses is similar to the intuition
behind generalized LR parsing [28], but instead of running the parser
on actual inputs, our approach simulates possible parser actions and
constructs counterexamples at parser generation time. Two copies of
the parser are simulated in parallel. One copy is required to take the
reduction and the other to take the shift action of the conflict. If both
copies accept an input at the same time, then this input is a unifying
counterexample. A distinct sequence of parser actions taken by each
copy describes one possible derivation of the counterexample.

More formally, the parallel simulation can be represented by ac-
tions on a product parser, whose states are the Cartesian product of
the original parser items. Two stacks are used, one for each original
parser. This construction resembles that of a direct product of non-
deterministic pushdown automata [1], but here the states are more
tightly coupled to make parser actions easier to understand. Like a
lookahead-sensitive graph, a product parser represents production
steps explicitly. Actions on a product parser are defined as follows:

u transition: If both items in a state of the product parser have a tran-
sition on symbol Z in the original parser, there is a corresponding
transition on Z in the product parser (Figure 6(a)). When this
transition is taken, Z is pushed onto both stacks.

u production step: If an item in a state of the product parser has a
nonterminal after �, there is a production step on this nonterminal
in the product parser (Figure 6(b)). Both stacks remain unchanged
when a production step is taken.

u reduction: If an item in a state of the product parser is a reduce
item, a reduction can be performed on the original parser associ-
ated with this item, respecting its loookahead set, while leaving
the other item and its associated stack unchanged.

For a conflict between items itm1 and itm2, a string accepted
by the product parser that also takes the parser through state
.itm1; itm2/ is a unifying counterexample for the conflict. The
remainder of this section describes an algorithm that efficiently
simulates the product parser without exploring irrelevant states.

5.2 Outward Search from the Conflict State
The strategy of using shortest lookahead-sensitive paths to avoid
exploring too many states does not work in general, because symbols
required after � might be incompatible with the productions already
made on these paths. For example, the grammar in Figure 7 has
two shift/reduce conflicts in the same state, between reduce item
A! a � and two shift items B ! a � b c and B ! a � b d under
symbol b. The shortest lookahead-sensitive path gives prefix n a �,
which is compatible with a unifying counterexample for the first
shift item, namely, n a � b c. Still, no unifying counterexamples
that use the second shift item can begin with n a �. An extra n is
required before �, as in n n a � b d c. This example suggests
that deciding on the productions to use before reaching the conflict
state is inimical to discovering unifying counterexamples.

To avoid making such decisions, our search algorithm starts from
the conflict state and completes derivations outward. Each search
state, denoted configuration henceforth, contains two pairs of (1)
a sequence of items representing valid transitions and production

itm1 D A ! X1 � � � Xk � XkC1 XkC2 � � � Xm

itm2 D B ! Y1 � � � Y` � Y`C1 Y`C2 � � � Yn

State .itm1; itm2/

itm01 D A ! X1 � � � Xk XkC1 � XkC2 � � � Xm

itm02 D B ! Y1 � � � Y` Y`C1 � Y`C2 � � � Yn

State .itm01; itm02/ Z, where Z D XkC1 D Y`C1

(a) Transition

itm1 D A ! X1 � � � Xk � XkC1 � � � Xm

itm2 D : : :

State .itm1; itm2/

itm01 D XkC1 ! � Z1 � � � Zm0

itm2 D : : :

State .itm01; itm2/ [prod] where XkC1
is a nonterminal

(b) Production step on the first parser

Figure 6. Components of the state machine for a product parser

S ! N j N c

N ! n N d j n N c j n A b j n B

A ! a

B ! a b c j a b d

Figure 7. An ambiguous grammar where the shortest lookahead-
sensitive path does not yield a unifying counterexample

I1 D Œitm1
1; : : : ; itmm1

1 �

D1 D Œd1
1 ; : : : ; d

n1

1 �

I2 D Œitm1
2; : : : ; itmm2

2 �

D2 D Œd1
2 ; : : : ; d

n2

2 �

(a) General form

I1 D Œconflict-item1�

D1 D Œ�

I2 D Œconflict-item2�

D2 D Œ�

(b) Initial configuration

Figure 8. Configurations. Each itm is an item in the original parser,
and each d is a derivation associated with a transition between items.

steps in the original parser, and (2) partial derivations associated
with transitions between items, as shown in Figure 8(a). The initial
configuration contains (1) singleton sequences of the conflict items
and (2) empty derivations, as shown in Figure 8(b). As partial
derivations are expanded, configurations progress through four
stages, which are illustrated in Figure 9 for the challenging conflict
from Section 3.1. The four stages are as follows:

1. Completion of the conflict reduce item: the counterexample
must contain derivations of all symbols in the reduce item. All
reduce/reduce conflict items are completed in this stage.

2. Completion of the conflict shift item: the counterexample must
also contain derivations of all symbols in the shift item. This
stage is not needed for reduce/reduce conflicts.

3. Discovery of the unifying nonterminal: the counterexample must
be a derivation of a single nonterminal. This stage also identifies
the innermost nonterminal for nonunifying counterexamples.

4. Completion of the entire unifying counterexample: the final
counterexample must complete all the unfinished productions.
This stage attempts to find the remaining symbols so that the
derivation of the nonterminal found in Stage 3 can be completed
at the same time on both copies of the parser.

Stage 1:

num �
expr

Stage 2:

arr[expr]:= num � hdigiti

: : :
numexpr

: : :
stmt num

: : :
expr

: : :
stmt

: : : : : :stmt

num

Stage 3:

arr[expr]:= num � hdigiti
expr num

: : :
stmt num

: : :
expr

: : :
stmt

: : : : : :stmt

num
expr

stmt
: : : : : :stmt

unifying
nonterminal

Stage 4:

expr ? arr[expr]:= num � hdigiti hdigiti ? stmt stmt
expr num

stmt num
expr

stmt
stmt

num num
expr expr

stmt stmt
stmt

Figure 9. Counterexamples and derivations associated with config-
urations after finishing each stage for the challenging conflict. The
derivation above each counterexample uses the reduce item; the one
below uses the shift item. The gray portion of the configuration is
not required for completing the stage.

5.3 Successor Configurations
We now present a strategy for computing successor configurations.
Figure 10 pictures some of the possible successor configurations
that can be reached from the configuration shown in Figure 8(a) via
various actions in the product parser:

u transition (Figure 10(a)): If the product parser has a transition on
symbol Z from the last item in the current configuration, append
the current configuration with appropriate items and symbols.

u production step on the first parser (Figure 10(b)): If the product
parser has a production step on the first parser from the last item
in the current configuration, append the item resulting from taking
the production step (itm01) to the sequence of items for the first
parser (I1). A production step on the second parser is symmetric.

u preparation of the first parser for a reduction: If the last item for
the first parser is a reduce item, but there are not enough items to
simulate a reduction moving forward, then more items must be
prepended to the configuration. That is, we must work backward
to ready the reduction. Preparing the second parser for a reduction
is symmetric. Successor configurations depend on the first item
in the current configuration:

reverse transition (Figure 10(c)): If the product parser has a tran-
sition on symbol Z to the first item in the current configuration,
prepend the current configuration with appropriate items and

itmm1

1

itmm2

2

itm01
itm02

Z

I1 CC Œitm01�

D1 CC ŒZ�

I2 CC Œitm02�

D2 CC ŒZ�

(a) Transition

itmm1

1

itmm2

2

itm01
itmm2

2

[prod]

I1 CC Œitm01�

D1

I2

D2

(b) Production step on the first parser

itm01
itm02

itm1
1

itm1
2

Z

Œitm01�CC I1

ŒZ�CCD1

Œitm02�CC I2

ŒZ�CCD2

where itmm1

1 is a reduce item
and itm01; itm02 are in same state

(c) Reverse transition

itm01
itm1

2

itm1
1

itm1
2

[prod]

Œitm01�CC I1

D1

I2

D2

where itmm1

1 is a reduce item of the form
A! X1 � � � X` �, and m1 D `C 1

(d) Reverse production step on the first parser

itm1
1

itm02

itm1
1

itm1
2

[prod]

I1

D1

Œitm02�CC I2

D2

where itmm1

1 is a reduce item of the form
A! X1 � � � X` �, and m1 < `C 1

(e) Reverse production step on the second parser

itmm1�`�1
1 D B ! Y1 � � � Yk � A � � � Ym

itm01 D B ! Y1 � � � Yk A � � � � Ymitmm1�`
1 D A! � X1 � � � X`

:::

itmm1

1

[prod] A

I 01 D Œitm1
1; : : : ; itmm1�`�1

1 ; itm01�

D01 D Œd1
1 ; : : : ; d

n1�`
1 ; .A! d

n1�`C1
1 � � � d

n1

1 /�

I2 D : : :

D2 D : : :

where itmm1

1 is a reduce item of the form
A! X1 � � � X` �, and m1 > `C 1

(f) Reduction on the first parser

Figure 10. Successor configurations. Each kind of edge in the
product parser corresponds to a particular successor configuration.
OperatorCC denotes list concatenation.

symbols. The prepended items must belong to the same state in
the original parser. Additionally, the lookahead set of the item
prepended to the first parser (itm01) must contain the conflict
symbol if the current configuration is yet to complete Stage 1.

reverse production step on the first parser (Figure 10(d)): If the
product parser has a production step on the first parser to the
first item in the current configuration, prepend the item prior to
taking the production step (itm01) to I1.

reverse production step on the second parser (Figure 10(e)):
Occasionally, the second parser will require a reverse production
step so that further reverse transitions can be made. In this case,
prepend the item prior to taking the production step (itm02) to
the sequence of items for the second parser (I2).

u reduction on the first parser (Figure 10(f)): If the last item for
the first parser is a reduce item of the form A ! X1 � � � X` �,
and the configuration has enough items, then the first parser is
ready for a reduction. A successor configuration is obtained by
(1) removing the last `C 1 items that are part of the reduction
from I1, which simulates popping the parser stack, (2) appending
the result of taking the goto on A (itm01) to I1, and (3) rearranging
the partial derivations (D1) to complete the derivation for A. The
second parser remains unchanged throughout the reduction. A
reduction on the second parser is symmetric.

5.4 Completing the Search
The search algorithm computes successor configurations until it
encounters a configuration Cf that has completed Stages 1 and 2,
where both sequences of items in Cf are of the form

Œ‹! � � � � A � � � ; ‹! � � � A � � � � �

for some nonterminal A. The partial derivations associated with
these sequences, which must be of the form ŒA! � � � �, show that
nonterminal A is ambiguous. The unifying counterexample is the
sequence of the leaf symbols within these derivations.

Several observations can be made about the algorithm. First, the
algorithm maintains an invariant that the head of both sequences of
items in any configuration belong to the same parser state, as the
sequence of states prior to the conflict must be identical for different
derivations of the unifying counterexample. Second, a configuration
generates multiple successor configurations only when a production
step (forward or backward) or a reverse transition is taken. Therefore,
the branching factor of the search is proportional to the ratio of the
number of these actions to the number of items in the parser.

The third observation is that a production step may be taken
repeatedly within the same state, such as one for items of the form
A! � A � � � . To avoid infinite expansions on one configuration
without making progress on others, the search algorithm must
postpone such an expansion until other configurations have been
considered. The algorithm imposes different costs on different kinds
of actions and considers configurations in order of increasing cost.

Finally, the algorithm is guaranteed to find a unifying coun-
terexample for every ambiguous grammar, but the search will not
terminate when infinite expansions are possible on unambiguous
grammars. In other words, this semi-decision procedure for deter-
mining ambiguity is sound and complete. Since a naive implementa-
tion of this algorithm is too slow for practical use, the next section
discusses techniques that speed up the search but still maintain the
quality of counterexamples.

6. Implementation
Our counterexample finder has been implemented in Java as a mod-
ule extending the CUP LALR parser generator [14] version 0.11b
201503265. The module contains 1478 non-comment, nonempty
lines of code. Figure 11 shows an error message reported by our
implementation for the shift/reduce conflict in Section 2.4. One
interesting design choice was the tradeoff between finding unify-
ing counterexamples when they exist, and avoiding long, possibly
fruitless searches when a nonunifying counterexample might suffice.

Data structures The search algorithm requires many queries on
possible parser actions, but parser generators usually do not provide
an infrastructure for fast lookups. In particular, reverse transitions
and production steps are not represented directly. Before working
on the first conflict within a grammar, our implementation generates
several lookup tables for these actions.

5 Available at https://github.com/polyglot-compiler/polyglot/
tree/master/tools/java_cup.

Warning : *** Shift/Reduce conflict found in state #13
between reduction on expr ::= expr PLUS expr �
and shift on expr ::= expr � PLUS expr
under symbol PLUS
Ambiguity detected for nonterminal expr
Example: expr PLUS expr � PLUS expr
Derivation using reduction:
expr ::= [expr ::= [expr PLUS expr �] PLUS expr]

Derivation using shift:
expr ::= [expr PLUS expr ::= [expr � PLUS expr]]

Figure 11. A sample error message reported by the implementation.
The first four lines are original to CUP.

Finding shortest lookahead-sensitive path Blindly searching for
the shortest path from the start state might explore all parser states.
As an optimization, only states that can reach the reduce conflict
item need be considered. These states can be found quickly using the
lookup tables for reverse transitions and reverse production steps.

Constructing unifying counterexamples The main search algo-
rithm is also unguided. As a tradeoff, the algorithm only considers
states on the shortest lookahead-sensitive path when making reverse
transitions. This restriction makes the algorithm incomplete, causing
it to miss unifying counterexamples that use parser states outside
the shortest path. Nevertheless, a counterexample that follows the
shortest lookahead-sensitive path will take the parser to the conflict
state as quickly as possible. These compact counterexamples seem
as helpful as unifying ones, so our tool does report them. The option
-extendedsearch can be used to force a full search.

Constructing nonunifying counterexamples The search for uni-
fying counterexamples may fail in two cases: first, when eligible
configurations run out; second, when a production step in an unam-
biguous grammar is taken repeatedly, resulting in nontermination.
Therefore, our implementation imposes a 5-second time limit on
the main search algorithm. When the search fails, a nonunifying
counterexample is constructed and reported instead.

The implementation also imposes a 2-minute time limit on the
cumulative running time of the unifying counterexample finder.
After two minutes, at least 20 conflicts must have been accompanied
with counterexamples, so the user is likely to prefer resolving them
first. Our tool seeks only nonunifying counterexamples thereafter.

Exploiting precedence Precedence and associativity are not part
of the parser state diagram, and hence are not part of the generated
lookup tables. Therefore, our implementation inspects precedence
declared with relevant terminals and productions during the search.

7. Evaluation
Our evaluation aims to answer three questions:

u Is our implementation effective on different kinds of grammars?
u Is our implementation efficient compared to existing ambiguity

detection tools?
u Does our implementation scale to reasonably large grammars?

7.1 Grammar Examples
We have evaluated our implementation on a variety of grammars.
For each grammar, Table 1 lists the complexity (the numbers of
nonterminals and productions, and the number of states in the
parser state machine) and the number of conflicts. The grammars
are partitioned into the following categories:

Our grammars All grammars shown in this paper are evaluated.
Other grammars that motivated the development of our tool, and a

https://github.com/polyglot-compiler/polyglot/tree/master/tools/java_cup
https://github.com/polyglot-compiler/polyglot/tree/master/tools/java_cup

Table 1. Evaluation results. T/L indicates 5-second time limit exceeded on all conflicts. Times in
parentheses indicate running time for the state-of-the-art ambiguity detector [2, 5].

Time (seconds)
Grammar # non

ter
ms

pro
ds

sta
tes

co
nflict

s

Amb?
unif

non
unif

tim
e ou

t

Total Average
figure1 3 9 24 3 4 3 0 0 0.072 0.024
figure3 4 7 10 1 7 0 1 0 0.010 0.010
figure7 4 10 16 2 4 2 0 0 0.016 0.008
ambfailed01 6 10 17 1 4 0 1 0 0.010 0.010
abcd 5 11 22 3 4 3 0 0 0.024 0.008
simp2 10 41 70 1 4 1 0 0 0.548 0.548
xi 16 41 82 6 4 6 0 0 0.155 0.026
eqn 14 67 133 1 4 1 0 0 0.169 0.169
java-ext1 185 445 767 2 7 0 0 2 T/L T/L
java-ext2 234 599 1255 1 7 0 0 1 T/L T/L
stackexc01 2 7 13 3 4 3 0 0 0.023 0.008
stackexc02 6 11 15 1 7 0 1 0 0.008 0.008
stackovf01 2 5 9 1 7 0 1 0 0.009 0.009
stackovf02 2 5 9 4 4 4 0 0 0.043 0.011
stackovf03 2 6 10 1 4 1 0 0 0.017 0.017
stackovf04 5 9 13 1 7 0 1 0 0.009 0.009
stackovf05 5 10 14 1 4 1 0 0 0.010 0.010
stackovf06 6 10 15 2 7 0 2 0 0.012 0.006
stackovf07 7 12 17 3 4 3 0 0 0.028 0.009
stackovf08 3 13 21 8 7 0 8 0 0.025 0.003
stackovf09 6 12 27 1 7 0 1 0 0.017 0.017
stackovf10 9 20 53 19 4 19 0 0 0.140 0.007
SQL.1 8 23 46 1 4 1 0 0 0.024 0.024 (1.8s)
SQL.2 29 81 151 1 4 1 0 0 0.060 0.060 (0.1s)
SQL.3 29 81 149 1 4 1 0 0 0.024 0.024 (0.1s)
SQL.4 29 81 151 1 4 1 0 0 0.031 0.031 (0.0s)
SQL.5 29 81 151 1 4 1 0 0 0.030 0.030 (0.4s)
Pascal.1 79 177 323 3 4 2 0 1 0.196 0.098 (0.3s)
Pascal.2 79 177 324 5 4 5 0 0 0.296 0.059 (0.1s)
Pascal.3 79 177 321 1 4 1 0 0 0.070 0.070 (1.2s)
Pascal.4 79 177 322 1 4 1 0 0 0.081 0.081 (0.3s)
Pascal.5 79 177 322 1 4 1 0 0 0.113 0.113 (0.3s)
C.1 64 214 369 1 4 1 0 0 0.327 0.327 (1.3s)
C.2 64 214 368 1 4 1 0 0 0.219 0.219 (1.11h)
C.3 64 214 368 4 4 4 0 0 1.015 0.254 (0.5s)
C.4 64 214 369 1 4 0 0 1 T/L T/L (1.3s)
C.5 64 214 370 1 4 1 0 0 0.212 0.212 (4.9s)
Java.1 152 351 607 1 4 1 0 0 0.569 0.569 (32.4s)
Java.2 152 351 606 1133 4 141 0 9 (983) 35.384 0.251 (0.4s)
Java.3 152 351 608 2 4 2 0 0 0.435 0.218 (35.1s)
Java.4 152 351 608 14 4 6 2 6 2.042 0.255 (6.5s)
Java.5 152 351 607 3 4 3 0 0 0.526 0.175 (3.3s)

Amb?
Whether the grammar
is ambiguous.

unif
Number of conflicts
for which unifying
counterexamples are
found within the time
limit.

nonunif
Number of conflicts
for which nonunify-
ing counterexamples
are found within the
time limit.

time out
Number of conflicts
for which the tool
times out. Nonunify-
ing counterexamples
are reported for these
conflicts.

Total time
Time used when coun-
terexamples are found
within the time limit.
(Average of 15 runs,
with a standard devi-
ation of at most 15%,
so the margin of error
is at most 9% at 95%
confidence.)

Average time
Total time

unifC # nonunif

few grammars in previous software projects that pose challenging
parsing conflicts are also part of the evaluation.

Grammars from StackOverflow and StackExchange We evalu-
ate our tool against grammars posted on StackOverflow and StackEx-
change by developers who had difficulty understanding the conflicts.
This section of Table 1 links to the corresponding web pages.

Grammars from existing tool To compare our implementation
with the state of the art, we run our tool against the grammars used
to evaluate the grammar filtering technique [5]. These grammars,
which we call the BV10 grammars hereafter, were constructed by
injecting conflicts into correct grammars for mainstream program-
ming languages. In some grammars (e.g., Java.2), the addition of a
nullable production generates a large number of conflicts.

7.2 Effectiveness
Our tool always gives a counterexample for each conflict in every
grammar. Table 1 reports the numbers of conflicts for which our
tool successfully finds a unifying counterexample (if the grammar
is ambiguous), for which our tool determines that no unifying

counterexample exists, and for which our tool times out and hence
reports a nonunifying counterexample. For grammars requiring more
than two minutes of the main search algorithm, the number of
remaining conflicts is shown in parentheses. Our implementation
finishes within the time limit on 92% of the conflicts.

The main search algorithm may fail to find a unifying coun-
terexample even if the grammar is ambiguous. One reason is the
tradeoff used to reduce the number of configurations, as explained in
Section 6. Grammar ambfailed01 illustrates this problem. Another
reason is that the configuration describing the unifying counterex-
ample has a cost too high for the algorithm to reach within the time
limit. For instance, the ambiguous counterexample for grammar
C.4 requires a long sequence of production steps. For these failures,
nonunifying counterexamples are reported instead.

We also compare effectiveness against prior versions of the
Polyglot Parser Generator (PPG) [18], which attempt to report only
nonunifying counterexamples. PPG produces misleading results on
ten benchmark grammars: figure1, figure7, abcd, simp2, SQL.5,
Pascal.3, C.2, Java.1, Java.3, and Java.4. Incorrect counterexamples
are generated because PPG’s algorithm ignores conflict lookahead

http://math.stackexchange.com/questions/297721/determining-ambiguity-in-context-free-grammars
http://cstheory.stackexchange.com/questions/22384/resolving-ambiguity-in-an-lalr-grammar-with-empty-productions
http://stackoverflow.com/questions/3373114/bison-shift-reduce-conflict-for-simple-grammar
http://stackoverflow.com/questions/910445/issue-resolving-a-shift-reduce-conflict-in-my-grammar
http://stackoverflow.com/questions/7967202/bison-complained-conflicts-1-shift-reduce
http://stackoverflow.com/questions/958885/how-to-resolve-a-shift-reduce-conflict-in-unambiguous-grammar
http://stackoverflow.com/questions/22384530/bison-yacc-reduce-reduce-conflict-for-a-specific-grammar-example
http://stackoverflow.com/questions/1760083/how-to-resolve-this-shift-reduce-conflict-in-yacc
http://stackoverflow.com/questions/5176867/why-are-there-3-parsing-conflicts-in-my-tiny-grammar
http://stackoverflow.com/questions/10031330/shift-reduce-conflicts-in-a-simple-grammar
http://stackoverflow.com/questions/196179/shift-reduce-conflict
http://stackoverflow.com/questions/9651733/why-are-these-conflicts-appearing-in-the-following-yacc-grammar-for-xml
http://stackoverflow.com
http://stackexchange.com
http://stackexchange.com

symbols. For instance, PPG reports this invalid counterexample for
the dangling-else conflict:

if expr then stmt � else
if expr then stmt � else stmt

The unifying counterexamples given by our algorithm provide
a more accurate explanation of how parsing conflicts arise. Our
algorithm has been integrated into a new version of PPG.

7.3 Efficiency
We have measured the running time of the algorithm on the conflicts
that our tool runs within the time limit. These measurements were
performed on an Intel Core2 Duo E8500 3.16GHz, 4GB RAM,
Windows 7 64-bit machine. The results are shown in the last two
columns of Table 1. For the BV10 grammars, we also include in
parentheses the time used on a similar machine by a grammar-
filtering variant of CFGAnalyzer [2, 5], which is the fastest, on
average, among the ambiguity detection tools we have found.
This state-of-the-art ambiguity detector terminates as soon as it
finds one ambiguous counterexample, whereas our tool finds a
counterexample for every conflict. Hence, the running time of the
state-of-the-art tool is compared against the average time taken per
conflict in our implementation.

On average, when the time limit is not exceeded, the algorithm
spends 0.18 seconds per conflict to construct a counterexample.
For grammars taken from StackOverflow and StackExchange, the
average is 8 milliseconds.

For the BV10 grammars, our algorithm outperforms the filtering
technique. Based on a geometric average, our tool is 10.7 times faster
than the variant of CFGAnalyzer, which takes more than 30 seconds
to find a counterexample for certain grammars. (One grammar takes
0.0s for both tools and therefore dropped from the average.) For
most of these grammars, the time our implementation takes to find
counterexamples for all conflicts is less than that of the state-of-the-
art tool trying to find just one counterexample. For grammar C.4,
the CFGAnalyzer variant finds a unifying counterexample, but our
tool fails to do so within the time limit. This result suggests that
grammar filtering would be a useful addition to our approach.

7.4 Scalability
The evaluation results show that the running time of our algorithm
only increases marginally on larger grammars, such as those for
mainstream programming languages. The performance shown here
demonstrate that, unlike prior tools, our counterexample finder is
practical and suitable for inclusion in LALR parser generators.

8. Related Work
Generating counterexamples is just one way to help address parsing
conflicts. In general, several lines of work address ways to deal with
such problems. We discuss each of them in turn.

Ambiguity detection Several semi-decision procedures have been
devised to detect ambiguity. Pandey provides a survey [19] on these
methods, some of which we discuss below.

One way to avoid undecidability is to approximate input CFGs.
The Noncanonical Unambiguity (NU) test [25] uses equivalence
relations to reduce the number of distinguishable derivations of a
grammar, reducing the size of the search space but overapproximat-
ing the language. Its mutual accessibility relations are analogous to
actions in our product parser. Basten extends the NU test to identify
a nonterminal that is the root cause of ambiguity [3]. One challenge
of the NU test is choosing appropriate equivalence relations.

A brute-force way to test ambiguity is to enumerate all strings
derivable from a given grammar and check for duplicates. This
approach, used by AMBER [27], is accurate but prohibitively slow.

Grammar filtering [5] combines this exhaustive approach with the
approximative approach from the NU test to speed up discovery of
ambiguities. AmbiDexter [4] uses parallel simulation similar to our
approach, but on the state machine of an LR(0), grammar-filtered
approximation that accepts a superset of the actual language. This
allows false positives.

CFGAnalyzer [2] converts CFGs into constraints in propositional
logic that are satisfiable if any nonterminal can derive an ambigu-
ous phrase whose length is within a given bound. This bound is
incremented until a SAT solver finds the constraints satisfiable. CF-
GAnalyzer does report counterexamples, but never terminates on
unambiguous input grammars even if there is a parsing conflict.

Schmitz’s experimental ambiguity detection tool [26] for Bison
constructs a nondeterministic automaton (NFA) of pairs of parser
items similar to our product parser states. Its reports of detected
and potential ambiguities remain similar to parsing conflict reports
and hence difficult to interpret. Counterexample generation remains
future work for Schmitz’s tool. To obtain precise ambiguity reports
for LALR(1) construction, this tool must resort to constructing NFAs
for LR(1) item pairs.

SinBAD [29] randomly picks a production of a nonterminal to
expand when generating sentences, increasing the chance of dis-
covering ambiguity without exhaustively exploring the grammar.
SinBAD’s search still begins at the start symbol, so reported coun-
terexamples might not identify the ambiguous nonterminal.

Counterexample generation Some additional attempts have been
made to generate counterexamples that illustrate ambiguities or
parsing conflicts in a grammar.

Methods for finding counterexamples for LALR grammars
can be traced back to the work of DeRemer and Pennello [11],
who show how to generate nonunifying counterexamples using
relations used to compute LALR(1) lookahead sets. Unfortunately,
modern implementations of parser generators do not compute
these relations. Our method provides an alternative for finding
nonunifying counterexamples without requiring such relations, and
offers a bonus of finding unifying counterexamples when possible.

DMS [8] is a program analysis and transformation system whose
embedded parser generator allows users to write grammars directly
within the system. When a conflict is encountered, DMS uses an
iterative-deepening [16] brute-force search on all grammar rules
to find an ambiguous sentence [7]. This strategy can only discover
counterexamples of limited length in an acceptably short time.

CUP2 [30] reports the shortest path to the conflict state, while
prior versions of PPG [18] attempt to report nonunifying counterex-
amples. These parser generators often produce invalid counterexam-
ples because they fail to consider lookahead symbols.

While less powerful than LR grammars, LL grammars can also
produce conflicts. The ANTLR 3 parser generator [20] constructs
counterexamples, but they can be difficult to interpret. For instance,
ANTLR 3 provides the counterexample hdigitihdigiti for the the
challenging conflict in Section 3.16. Our technique describes the
ambiguity more clearly.

Conflict resolution Generalized LR parsing [28] keeps track of
all possible interpretations of the input seen so far by forking the
parse stack. This technique avoids LR conflicts associated with
having too few lookahead symbols but requires users to merge the
outcomes of ambiguous parses at parse time. Our approach, which
pinpoints ambiguities at parser construction time, is complementary
and applicable to GLR parsing.

The GLR parsing algorithm is asymptotically efficient for
typical grammars, but its constant factor is impractically high.
Elkhound [17] is a more practical hybrid between GLR and LALR

6 The example grammar was modified to eliminate left recursion.

parsing. It can display different derivations of ambiguous sentences,
but the user must provide these sentences.

The eyapp tool [24], a yacc-like parser generator for Perl, post-
pones conflict resolution until actual parsing. Users can write code
that inspects parser states and provides an appropriate resolution.

SAIDE [22, 23] is an LALR parser generator that automatically
removes conflicts arising from insufficient number of lookaheads,
and attempts to detect ambiguities by matching conflicts with prede-
fined patterns of known cases. Although this approach guarantees
termination, conflicts could be miscategorized.

Dr. Ambiguity [6] provides diagnostics explaining causes of
ambiguities as an Eclipse [12] plugin, but a collection of parse trees
demonstrating ambiguities must be provided as input.

ANTLR 4 [21] uses textual ordering of productions as prece-
dence and abandons static detection of conflicts. Textual ordering
makes grammars less declarative, but ambiguous inputs can still
exist; any ambiguities are discovered only at parse time.

9. Conclusion
Better tools that help language designers quickly find potential flaws
within language syntax can accelerate the design and implemen-
tation of programming languages and promote the use of parser
generators for problems involving custom data formats. Our method
finds useful counterexamples for faulty grammars, and evaluation of
the implementation shows that the method is effective and practical.
This paper suggests that the undecidability of ambiguity for context-
free grammars should not be an excuse for parser generators to give
poor feedback to their users.

Acknowledgments
Andrew Hirsch, Matthew Milano, Isaac Sheff, Owen Arden, Jed Liu,
and Vivek Myers offered useful suggestions for the presentation.
Steve Blackburn and Ben Hardekopf helped with the review process.

This work was supported by Office of Naval Research grant
N00014-13-1-0089 and National Science Foundation grant 0964409.

References
[1] Tadashi Ae. Direct or cascade product of pushdown automata. Journal

of Computer and System Sciences, 14(2):257–263, 1977.
[2] Roland Axelsson, Keijo Heljanko, and Martin Lange. Analyzing

context-free grammars using an incremental SAT solver. In Automata,
Languages and Programming, volume 5126 of Lecture Notes in
Computer Science, pp. 410–422. Springer Berlin Heidelberg, 2008.

[3] H. J. S. Basten. Tracking down the origins of ambiguity in context-free
grammars. In Theoretical Aspects of Computing – ICTAC 2010, volume
6255 of Lecture Notes in Computer Science, pp. 76–90. Springer Berlin
Heidelberg, 2010.

[4] H. J. S. Basten and T. van der Storm. AmbiDexter: Practical ambiguity
detection. In Proc. 10th IEEE Int’l Workshop on Source Code Analysis
and Manipulation (SCAM 2010), pp. 101–102, Sept 2010.

[5] H. J. S. Basten and J. J. Vinju. Faster ambiguity detection by grammar
filtering. In Proc. 10th Workshop on Language Descriptions, Tools and
Applications, pp. 5:1–5:9, 2010.

[6] Hendrikus J. S. Basten and Jurgen J. Vinju. Parse forest diagnostics
with Dr. Ambiguity. In Software Language Engineering, volume 6940
of Lecture Notes in Computer Science, pp. 283–302. Springer Berlin
Heidelberg, 2012.

[7] Ira Baxter. What is the easiest way of telling whether a BNF grammar
is ambiguous or not? (answer). StackOverflow, July 2011. Retrieved
November 11, 2014.

[8] Ira D. Baxter, Christopher Pidgeon, and Michael Mehlich. DMS®:
Program transformations for practical scalable software evolution. In
Proc. 26th Int’l Conf. on Software Engineering (ICSE), pp. 625–634,
May 2004.

[9] CVE. CVE-2013-0269. Common Vulnerabilities and Exposures,
February 2013. Retrieved November 13, 2014.

[10] CVE. CVE-2013-4547. Common Vulnerabilities and Exposures,
November 2013. Retrieved November 13, 2014.

[11] Frank DeRemer and Thomas Pennello. Efficient computation of
LALR(1) look-ahead sets. ACM Trans. on Programming Languages
and Systems, 4(4):615–649, October 1982.

[12] J. des Rivières and J. Wiegand. Eclipse: A platform for integrating
development tools. IBM Systems Journal, 43(2):371–383, 2004.

[13] John Hopcroft and Jeffrey Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, Reading, MA, 1979.
ISBN 978-0-201-02988-8.

[14] Scott E. Hudson, Frank Flannery, C. Scott Ananian, Dan Wang,
and Andrew Appel. CUP LALR parser generator for Java, 1996.
Software release. At http://www.cs.princeton.edu/˜appel/
modern/java/CUP/.

[15] Stephen C. Johnson. Yacc: Yet another compiler-compiler. Computing
Science Technical Report 32, AT&T Bell Laboratories, Murray Hill,
NJ, July 1975.

[16] Richard E. Korf. Depth-first iterative-deepening: an optimal admissible
tree search. Artificial Intelligence, 27(1):97–109, September 1985.

[17] Scott McPeak and George C. Necula. Elkhound: A fast, practical GLR
parser generator. In Proc. 13th Int’l Conf. on Compiler Construction
(CC’04), pp. 73–88, 2004.

[18] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers.
Polyglot: An extensible compiler framework for Java. In Proc. 12th

Int’l Conf. on Compiler Construction (CC’03), pp. 138–152, April
2003.

[19] Hari Mohan Pandey. Advances in ambiguity detection methods
for formal grammars. Procedia Engineering, 24(0):700–707, 2011.
International Conference on Advances in Engineering 2011.

[20] Terence Parr and Kathleen Fisher. LL(*): The foundation of the ANTLR
parser generator. In Proc. 32nd ACM SIGPLAN Conf. on Programming
Language Design and Implementation (PLDI), pp. 425–436, 2011.

[21] Terence Parr, Sam Harwell, and Kathleen Fisher. Adaptive LL(*)
parsing: The power of dynamic analysis. In Proc. 2014 ACM SIGPLAN
Conf. on Object-Oriented Programming, Systems, Languages, and
Applications, pp. 579–598, 2014.

[22] Leonardo Teixeira Passos, Mariza A. S. Bigonha, and Roberto S.
Bigonha. A methodology for removing LALR(k) conflicts. Journal of
Universal Computer Science, 13(6):737–752, June 2007.

[23] Leonardo Teixeira Passos, Mariza A. S. Bigonha, and Roberto S.
Bigonha. An LALR parser generator supporting conflict resolution.
Journal of Universal Computer Science, 14(21):3447–3464, December
2008.

[24] C. Rodriguez-Leon and L. Garcia-Forte. Solving difficult LR parsing
conflicts by postponing them. Comput. Sci. Inf. Syst., 8(2):517–531,
2011.

[25] Sylvain Schmitz. Conservative ambiguity detection in context-free
grammars. In Automata, Languages and Programming, volume 4596
of Lecture Notes in Computer Science, pp. 692–703. Springer Berlin
Heidelberg, 2007.

[26] Sylvain Schmitz. An experimental ambiguity detection tool. Science
of Computer Programming, 75(1–2):71–84, 2010. Special Issue on
ETAPS 2006 and 2007 Workshops on Language Descriptions, Tools,
and Applications (LDTA ’06 and ’07).

[27] Friedrich Wilhelm Schröer. AMBER, an ambiguity checker for context-
free grammars. Technical report, Fraunhofer Institute for Computer
Architecture and Software Technology, 2001.

[28] Masaru Tomita, editor. Generalized LR Parsing. Springer US, 1991.
ISBN 978-1-4613-6804-5.

[29] Naveneetha Vasudevan and Laurence Tratt. Detecting ambiguity in
programming language grammars. In Proc. 6th Int’l Conf. on Software
Language Engineering, pp. 157–176, October 2013.

[30] Andreas Wenger and Michael Petter. CUP2 LR parser generator for
Java, 2014. Software beta release. At http://www2.in.tum.de/
cup2.

http://dx.doi.org/10.1016/S0022-0000(77)80016-0
http://dx.doi.org/10.1007/978-3-540-70583-3_34
http://dx.doi.org/10.1007/978-3-642-14808-8_6
http://dx.doi.org/10.1109/SCAM.2010.21
http://dx.doi.org/10.1145/1868281.1868286
http://dx.doi.org/10.1007/978-3-642-28830-2_16
http://stackoverflow.com/a/6631275
http://dx.doi.org/10.1109/ICSE.2004.1317484
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0269
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-4547
http://dx.doi.org/10.1145/69622.357187
http://dx.doi.org/10.1147/sj.432.0371
http://www.cs.princeton.edu/~appel/modern/java/CUP/
http://www.cs.princeton.edu/~appel/modern/java/CUP/
http://dx.doi.org/10.1016/0004-3702(85)90084-0
http://dx.doi.org/10.1007/978-3-540-24723-4_6
http://dx.doi.org/10.1007/3-540-36579-6_11
http://dx.doi.org/10.1016/j.proeng.2011.11.2722
http://dx.doi.org/10.1145/1993498.1993548
http://dx.doi.org/10.1145/2660193.2660202
http://dx.doi.org/10.3217/jucs-013-06-0737
http://dx.doi.org/10.3217/jucs-014-21-3447
http://dx.doi.org/10.2298/CSIS101116008R
http://dx.doi.org/10.1007/978-3-540-73420-8_60
http://dx.doi.org/10.1016/j.scico.2009.07.002
http://accent.compilertools.net/Amber.html
http://dx.doi.org/10.1007/978-1-4615-4034-2
http://dx.doi.org/10.1007/978-3-319-02654-1_9
http://www2.in.tum.de/cup2
http://www2.in.tum.de/cup2

	Introduction
	Background
	Parser State Machine
	Shift/Reduce Conflicts
	Reduce/Reduce Conflicts
	Precedence

	Counterexamples
	A Challenging Conflict
	Properties of Good Counterexamples

	Constructing Nonunifying Counterexamples
	Constructing Unifying Counterexamples
	Product Parser
	Outward Search from the Conflict State
	Successor Configurations
	Completing the Search

	Implementation
	Evaluation
	Grammar Examples
	Effectiveness
	Efficiency
	Scalability

	Related Work
	Conclusion

